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Received 13 April 1989 

Abstract. Maxwell's equations in flat spacetime are solved for an isolated uniformly rotating 
magnetised sphere that can sustain convective and vorticity currents in the infinite conduc- 
tivity limit. The study is motivated by the problem of accounting for the radiation from 
rapidly spinning compact stellar objects. Two types of magnetic interiors are considered 
to determine how the resultant radiation field departs from traditional point dipole magneti- 
sation models. The torque reaction produced by the emitted radiation is calculated and 
the result compared with simpler models that have featured in the dynamics of pulsars. 

1. Introduction 

The electrodynamic properties of moving media are relevant to a number of problems 
in contemporary physics. This paper investigates the electromagnetic field generated 
by a rapidly rotating, rigid, magnetised sphere in uacuo. Such a problem has been 
encountered by various authors in a number of different scenarios [ 1,2]. In particular 
the description of radiation from compact objects such as pulsars and  magnetic stars 
has relied fundamentally on such field configurations. Many authors in this context 
have developed early work by Deutsch [3] (see also [4]) with a number of refinements 
to a basically magnetic dipole model. The essential programme in these papers is the 
solution of Maxwell's equation in an inertial frame by postulating some co-rotating 
magnetic field in the interior of the star [ 5 ] .  Then if the conductivity of the medium 
is effectively infinite one can immediately deduce the interior electric field from an  
assumed rigid rotation rate. By continuity the tangential electric and normal interior 
magnetic induction fields with respect to the surface then determine the structure of 
the Maxwell solutions outside the star. 

An alternative procedure is to investigate the Einstein-Maxwell system for 
modifications to the Kerr metric. This is relevant for those situations in which the 
electromagnetic field is influenced by an intense gravitational field such as that around 
a rotating magnetic black hole. A perturbative approach to this problem has been 
pioneered by Teukolsky [6] and Teukolsky and  Press [7]. In this approach the field 
boundary conditions on various horizons play an  important role in constructing 
solutions. In such problems one is rarely concerned with interior stellar solutions and  
the subsequent matching problems for electromagnetic fields at magnetisation boun- 
daries. The complexity of coupled Einstein-Maxwell problems for realistic black holes 
has led to the membrane paradigm [8] for dealing with boundary data. We shall not 
in this paper be concerned with the influence of gravitation on the Maxwell equations 
and  will concentrate on exact relativistic solutions in Minkowski spacetime. 
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Even with a non-dynamical (flat) gravitational background the procedures outlined 
above leave great freedom in  the construction of realistic models. To our knowledge 
most models to date postulate in this context an interior magnetic field corresponding 
to a point magnetic dipole situated at some location within an infinitely conducting 
sphere. With a central dipole aligned along the axis of rotation the external field 
consists of a static magnetic dipole field together with a static electric quadrupole field. 
In the non-aligned case [9] the near field includes magnetic quadrupole terms and  one 
finds electromagnetic radiation from the sphere. In the non-relativistic limit such 
solutions can be simulated by rotating a permanent uniform magnetisation within the 
sphere. Since a static uniformly magnetised sphere behaves as a point magnetic dipole 
at the centre of a sphere with respect to the external fields one might expect point 
dipole models to always be simulations of simple magnetised interiors, even in the 
case of rapidly rotating spheres. I t  is this issue that we address in the following: we 
seek exact solutions in which the form of the interior co-rotating magnetisation is a 
self-consistent source. The form taken by the magnetisation will depend on the physics 
of extended matter under extreme conditions. Such conditions are unlikely to be 
simulated in the laboratory or probed directly by astrophysical observation. In such 
circumstances one can but attempt to reconcile observational data with theoretical 
models. In  this paper we present two solutions corresponding to two different types 
of magnetisation. In both cases we admit the existence of a purely convective current 
in the interior of the sphere. Such a current is demanded by the phenomenon of 
unipolar induction and has been studied in [lo]. However, if the extended matter is 
magnetically ‘pliable’ so that the local magnetisation is deformable then a solution 
can be found without generating additional currents. On the other hand if the matter 
is magnetically ‘stiff’, a different type of interior solution may be found in which 
additional electric vorticity currents flow. These solutions produce markedly different 
radiation patterns in general. The field exterior to the sphere is essentially determined 
by matching to a component of the interior Maxwell field E The different types of 
magnetisation determine different surface currents and charges on the interface between 
the sphere and the vacuum. It is this latter characteristic that may be of relevance in 
more complex models in which the sphere rotates in a plasma and is one of the 
motivations for our study of solutions describing extended magnetic matter. Once one  
leaves the simple point dipole model, generalisations become somewhat ad hoc unless 
they can be related to particular interior solutions to the relativistic Maxwell equations 
for an accelerating source. 

2. Interior fields 

Our formulation of this problem follows that of [lo]. Thus we use the language of 
exterior forms. A notable difference from earlier treatments of Maxwell equations in 
this language [ 111 is that we work directly with decompositions of the Maxwell 2-form 
and the associated magnetisation source form rather than a potential. The construction 
of our solutions is facilitated by the choice of a convenient Frenet frame adapted to 
the problem. In [ I O ]  the stationary fields generated by a rapidly rotating magnetised 
sphere were derived for an axially symmetric configuration. It is this symmetry that 
we now relax, allowing for the possibility of electromagnetic radiation. As before the 
rotating sphere is modelled by a time-like unit vector field V with compact support 
on a domain I of Minkowski spacetime M .  This interior of the sphere has a history 
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defined by a bounding hypersurface. Such a hypersurface may be taken as the zero 
of a real function f on spacetime that partitions the manifold M into the domain I 
(f<O, the interior history) and  I1 ( f>  0, the exterior domain). For a solid sphere, I 
is contractable and  the history of the centre of the sphere is taken to be an inertial 
integral curve of V. 

Denote by g the Minkowski metric tensor field on M and by * its associated Hodge 
map on differential forms. Let F' be the Maxwell field 2-form on domain I and  II' 
the polarisation 2-form describing the permanent magnetisation of the sphere. Let j '  
denote the current 3-form describing all Maxwell sources not included in I1'. Then 
Maxwell's equations for the fields in the sphere may be written 

dF '=O (2.1) 

d * G ' = j '  (2.2) 

where G' = s,F'+II' in terms of the permittivity E ,  of free spacetime. (Throughout 
we use units in which c = 1 so &,,pO = 1.) If domain I is an Ohmic conductor with 
constant scalar conductivity (+ then * j '  contains a contribution -civF' .  We look for 
field configurations for which the only additional allowed currents in I comprise a 
convective term -p? where p is a scalar function (the volume charge density in the 
co-rotating frame of the sphere) to be determined, together with a possible vorticity 
current depending on d q  Here and  in what follows a tilde over a vector denotes the 
form associated with it by the metric; i.e. ? ( X )  = g(  V, X )  for all vector fields X .  

It is worth emphasising that the choice of admissible currents ( j ,  d * n)' in I properly 
characterises the class of models under consideration. In the following we consider 
the possibility of a vorticity current A d 

The magnetic properties of the sphere are encoded into the space-like 1-form m, 
on I satisfying ivmv = 0. This produces a co-moving magnetic induction field 1-form 
bv satisfying ivbv = O .  We assume that the Ohmic conductivity of the sphere is 
effectively infinite so that 

A V where A is a scalar on I. 

ivF' = 0. (2.3) 

n' = - * ( m v r \  0) (2.4) 

F' = * ( b v  A Q) i v  * b,. (2.5) 

Thus we write 

To proceed we introduce a local spherical polar coordinate system ( t ,  r, e, 4 )  in 

(2.6) 
In these coordinates the hypersurface f = 0 has f = r - a where the constant a may be 
identified with the radius of the sphere. If the constant w denotes the angular velocity 
of the sphere about a fixed direction we have 

(2.7) 

which the metric takes the form 

g = -dt O d t  + d r O d r  + r' d e O d 6  + r' sin' 8 d d  O d d .  

v = y ( d ,  + wa,) 

y(r ,  e)  = (1 - w2r2 sin' e)- ' ' ' .  
where 

(2.8) 
The vector field V will remain time-like in I provided w is constrained to ensure that 
y remains bounded. Since ivF' = 0 and d F '  = 0 it follows that 3°F' = 0 in terms of 
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the Lie derivative. The above conditions can be implemented by taking the forms m, 
and b ,  to depend on functions of (ut - 4). We further demand that in the limit w = 0 
our solutions reduce in an  inertial frame to the standard magnetostatic solutions for 
a sphere with a unlform constant magnetisation, having a non-zero angle with the 
rotation axis. The above conditions certainly include those imposed by other authors 
in their analyses and we therefore expect to make contact with the solutions of Deutsch 
in some limit or approximation. What is essentially new in the following is an  
investigation of Maxwell's equations for the interior of the rotating sphere with a 
self-consistent magnetisation and its subsequent effect on the exterior radiation modes. 

To determine b ,  and m y  we shall refer them to a field of Frenet frames { N , }  defined 
by V. When restricted to any integral curve C of V (the history of an  element of a 
sphere) the set {N , } Ic  provides a well defined g-orthonormal Frenet tetrad along C. 
If C denotes the Levi-Civita connection such a frame is defined to satisfy 

Y N ,  Nol, = AOKINl (2.9) 
VNf ,NIIc  = - A o ~ I N , l + A r ~ 7 N 2  (2.10) 

C ,v(, N.1 c = -A I K ?  NI i- A 3  K 3 N7 (2.11) 

CN(,N;I,  = - A ~ K T N ~  (2.12) 

where g(  N I ,  N I )  = A ,  = * 1  and K ,  are scalars (the curvatures of C).  We shall choose 
No time-like. These equations have as solutions (naturally extended to a field): 

N o =  V =  y(X, ,+wrs in  OX,) (2.13) 

N , = s i n  8 X , + c o s  OX2 (2.14) 
N2 = y (  wr sin 8 Xo+ X,) (2.15) 

N 3 = a , = c o s 8 X l - s i n  ex2 (2.16) 
in terms of the orthobasis (Xo :a , ,  XI =a,, X z  = ( l / r )  d e ,  X ,  = 1 / (  r sin 8) dd), The 
curvatures of C are ( K ~  = - y'w-r sin 8, K ?  = ay ' ,  K~ = 0 ) .  We verify that if eo = dt, 
( e '  = dr, e'= r do, e '=  r sin 8 d 4 )  then 

- . . - a  * 1 = eo A e' A e2  A e' = - N,, A N I  A N2 A N ,  . 
In  such a frame we may expand 

b v =  2 a,fi, 
, = I  

(2.17) 

(2.18) 

in terms of six functions { a , ,  p , }  on I .  
We substitute the expansions (2.17) and (2.18) into (2.1) and (2.2) with a choice 

of sources ( j ,  d * ll) of the form discussed above. The symmetry conditions, together 
with the condition that we desire the magnetisation of the non-rotating sphere to be 
uniform and  directed at a fixed angle to the rotation axis, enable us to select a solution 
with 

1 

Y 
a I  = -- [bl cos(wr - 4 )  - br sin(wt- 4)]  (2.19) 

(2.20) 
(2.21) 
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Hence we have a closed 2-form 

- b 3 y f i I A f i 2  (2.22) 

with ( b ' ,  b,, b,) constants to be determined. 
(The fact that this form is closed follows readily with the aid of the equations: 

(2.23) 

d f i l = O  (2.24) 

(2.25) 

d f i l = O  (2.26) 

and confirms the utility of the Frenet basis here.) In terms of the inertia1 co-frame: 

F ' ~ ~ = ( - b , c o s a + b z s i n a ) ( ( w r s i n ' e - o r s i n  8 c o s  e)e"Ae'  

-cos 8 e '  A e'+sin 0 e' A e 3 ) +  ( 6 ,  sin a + b2 cos .)(e' A e ' )  

- y2b3( wr sin' 0 eo A e '  + wr sin B cos 8 e" A e2  

+ c o s ~ e ' ~ e ' + s i n 8 e ' ~ e ~ )  (2.27) 

where a = ( w f  - d) .  The magnetisation form II', that enters into the Maxwell equation 

d * G ' = - * p ? + A d p A  (2.28) 

is proportional to F'c,: 

I I ' c i  = (ml cos a - mz sin a ) ( (UT sin' e - wr sin e cos e)eo A e '  

-cos 0 e '  A e'+sin 

- y'm,(wr sin' e e " ~  e '  + wr sin e cos 8 e"A e2 

+cos 8 e' A e'+sin ~ e '  A e') 

e 2  A e ' ) + ( m ,  sin a + m2 cos .)(e' A e ' )  

(2.29) 

in terms of some given constants m ,  , m?,  mj.  The magnetisation is thus specified by 

1 
Y 

PI = -- [ m ,  cos(wt - 4 )  - m, sin(wt - 411 

P r = - [ m ,  s i n ( w t - 4 ) + m 2 c o s ( w t - 4 ) ]  

PS = ym,  . 
We then have a solution with 

p = - 2 y ' w ( ~ ( > b ,  - m,) 

(2.30) 

(2.31) 

(2.32) 

(2.33) 

(2.34) 



4802 M Mukherjee and R W Tucker 

Such a solution corresponds to what we have termed a stiff magnetisation in the 
introduction. From the expression for r I ' 8 ,  we have 

GI(, = (-c, cos a + c2 sin a ) ( (wr  sin' 8 - wr sin 8 cos B)eo A e '  

-cos 8 e '  A e3+ sin 8 e' A e')+ (c ,  sin a + c2 cos a ) ( e 2  A e ' )  

- y 2 c 3 ( w r  sin' 8 eo A e '  + wr sin e cos 8 e" A e' 

+ c o s 8 e Z A e s + s i n  Be'  he ')  (2.35) 

where c, = cob, - m, for i = 1 , 2 , 3 .  
It is of interest now to look for a different solution corresponding to a magnetisation 

that generates a purely convective current source, i.e. one with A = 0. This can be 
achieved if we modify the constitutive relation between F' and TI', allowing the 
proportionality to vary over the interior of the sphere in a way consistent with Maxwell's 
equations. However we shall impose the conditions 

(2.36) 

(2 .37)  

so that the magnetisation simply adjusts its local direction uniformly in each concentric 
shell about the origin, in response to the rotation. With the imposition of this condition 
the { a , }  follow as before: 

a ,  = 9 ( y ) ( b l  c o s ( w t - 4 ) - b z s i n ( o r - 4 ) )  (2.38) 

a2 = 9( y ) (  b ,  sin( wt  - 4) + b2 cos( wt - 4)) (2.39) 

= Yb, (2.40) 

(2 .41)  

with 9 normalised so that 9(1) = 1, and { b l ,  b', b,}  constants to be determined. 
Similarly the equation (2.28) with A = O  is solved with 

P I  = % ( y ) ( m ,  c o s ( w r - 4 ) - m z s i n ( w r - 4 ) )  (2 .42)  

P 2 =  % ( y ) ( m l  sin(wr- 4 ) +  m2 cos(ur - 4)) (2.43) 

P3 = Yms (2.44) 

and 

(2.45) 

normalised to %( 1) = 1. Such a solution, denoted henceforth as solution b, corresponds 
to what we have termed a pliable magnetisation in the introduction. For consistency 
we must have the constant s = & , b , / m ,  = EgbZ/m2.  The constants { b ; }  in both types of 
solution will be fixed by our  boundary conditions in terms of the constants {mi}  that 
specify the overall strength of the static magnetisation. Besides fixing the structure of 
the function %, equation (2 .28)  also determines the convective current - p c  Thus the 
co-moving volume charge density within the sphere induced by the rotation is given by 

~ = - 2 y ~ w ( ~ ~ b ~ - m ~ ) .  
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Both stiff and pliable magnetic interiors generate the same convective current, deter- 
mined essentially by the component of magnetisation in the direction of rotation. 

In the inertial frame determined by the observer field U = a,  the volume charge 
density follows from 

-p  * Q = - p , ,  * C + J ,  A i! (2.46) 

Hence the inertial charge density for both solutions is 

-pV  = - p Q ( a , )  = -2(e0b3- m3)y4w (2.47) 

and is accompanied by an azimuthal 3-current 2-form 

J u  = puwr' sin 8 d r  A do. (2.48) 

The total free volume charge &, inside the sphere is readily computed from the formula 

(2.49) 

and this vanishes when w = 0. 
For future reference we record that in the pliable magnetisation case: 

F1h=y9'(y)(-bl  c o s a + b , s i n  a ) ( ( w r s i n 2 8 - w r s i n  Ocos 8)eor \e '  

-cos 8 e'  A e3 + sin 8 e' A e') + 9( y)(  b, sin a + b' cos a ) (  e? A e ' )  

- y2b,( wr sin' 8 eo A e'  + wr sin 8 cos 8 eo A e' 

+cos 8e2A e3+sin 8 e '  A e') (2.50) 

~ ' h = y % ( y ) ( m ,  cosa-m,s ina) ( (wrs in '  e - w r s i n  e c o s o ) e o A e '  

-cos e e '  ~ e ~ + s i n  e e 5  e 3 ) + % ( y ) ( m I  sin a + m z c o s  a ) ( e > ~  e') 

-y2m3(wr sin' e e" A e '  + wr sin 8 cos 8 eo A e2 

+cos 8 e' A e'+sin 8 e'  A e') (2.51) 

G ' h = y ( - ~ , ( y ) c o s a + ~ ~ ( ~ ) s i n  a) ( (wrs in26-wrs in  @cos  8)eOAe' 

-cos 8 e '  A e3+ sin e e2 A e') + ( % , ( y )  sin a + x ~ y )  cos a ) ( e '  A e ' )  

- y2(eob, - m,) (wr  sin' 0 e" A e '  + o r  sin 8 cos e eo A e' 

+cos 8 e' A e'+sin 8 e'  A e'). (2.52) 

In these expressions 

W Y )  = WY),  -i%Yy)2 

W Y ) ,  = EObrp(y) -m,%(y)  i = l , 2 .  

In order to fix the constants {b ,}  in both solutions we must compute the vacuum fields 
outside the sphere. 
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3. Exterior fields 

In  the domain r >  a we decompose F" with respect to U = a , :  
F" = e" A fi + * (b" A fi) (3.1) 

(3.2) = -e" A d t  - f b" 

where * 1 = d t  A f 1 and iue" = iL,b" = 0. The real electric and magnetic 1-form fields 
satisfy the inertial vacuum Maxwell equations 

de" = - f  Y;,b" (3.3) 

d f  e"=O (3.4) 

db" = f zdte"  (3.5) 

d f 6" = 0. 

Guided by the structure of F 1  we write 

(3.6) 

(3.7) 

where k ,  = nu with n # 0 and e,,, b,, d @ k ,  d@: are time-independent. Henceforth all 
sums over n will be understood to exclude the term with n = 0. The electric and 
magnetic scalar potentials on I 1  satisfy 

(3.9) 

(3.10) 

Since OE and Q M  are also independent of time they must be harmonic on I1 and may 
be analysed into Legendre polynomials with standard radial amplitudes. From (3.3)- 
(3.6) it follows that the Fourier modes must satisfy 

1 
e,, = - f d b,, 

k" 

(3.1 1) 

(3.12) 

(3.13) 

1 
f de,, (3.14) b =--  

kn 
- 

where 2, = e-,, and b,, = b-,,. 
It is customary to analyse these equations in a spherical polar chart using vector 

spherical harmonics. Such vector harmonics are constructed from a 0-form solution 
to the Helmholtz equation and have been extensively studied [12]. We shall simply 
observe here that such a mode analysis relies fundamentally on the fact that if a I-form 
a on a three-dimensional manifold satisfies the equations 

Sa = o  (3.15) 

6 d a  = - u 2 a  (3.16) 
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where 6 = -*-Id * a, then ixa also satisfies the 0-form equation 

S d(  ixa) = -u2( ixa)  (3.17) 

where X is any homothetic conformal Killing vector field: 

Y x g  = 211g 

for some constant '2. In  R 3  with standard spherical 
a vector field. We write 

X 

e " + d @ L = e =  e;,+e;, 
n = - x  

X 

b " + d @ b = b =  bYM+bqE 
n = - x  

(3.18) 

polar coordinates, X = rd,  is such 

(3.19) 

(3.20) 

where = 0 and i,,b;M = 0. Note that ri3,bqM and ri,,eqM may be expanded in terms 
of the 0-form spherical harmonics Y/,,(e, 4 )  with radial functions proponional to 
solutions of the spherical Bessel equation. For radiative modes at large r we naturally 
adopt the spherical Hankel functions h ) " ( k , r )  so that hj"(k,r)  e-ik," (and its complex 
conjugate) represent outgoing radial waves. By performing a 2 +  1 split of the forms 
e and b with respect to the radial field d, such that 

(3.21) $1 = d r  A #1 

we deduce the expansions 

where h!, = h)"(k, ,r)  and the vector harmonics 

r# dY,, 
Im - i- 
x -  

satisfy 

i,. X / ' m ' A  # x / m  = r28/,/6m,m 

r 

(3.24) 

(3.25) 

(3.26) 

(Here and below an overbar denotes complex conjugation.) The time-independent 
harmonic 0-forms may be expanded as 

(3.27) 

(3.28) 

in terms of the Legendre polynomials 
I 

(3.29) 
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Exclusion of 1 = 0 incorporates the charge neutrality condition for the magnetised 
sphere and we observe that only odd/even values of 1 will contribute to the sum in 
equation (3.28)/(3.27). The vacuum Maxwell field F" can now be computed in terms 
of the complex amplitudes m), m ) ,  aE( l ) ,  pM(l )  by imposing the standard 
boundary conditions: 

[ F ' - - F " ] ~ d r l , , , = 0  (3.30) 

where, in terms of the interior electric and magnetic fields, 

F'  = -e' A dr - S b ' .  (3.31) 

Since the time-dependent part of our interior fields depends on the combination 
( 4  - ut), their Fourier expansions are 

X 

e ' =  (eL(r, e )  e'"d) e-IkJ-d@L 

b ' =  ( b L ( r ,  O ) e i n m ) e - i k * ~ ' - d @ ~ .  

n = --r 

X 

n = - x  

Hence the only non-zero multipole amplitudes are given, with m # 0, by 

(3.32) 

(3.33) 

where the interior radial magnetic field mode is determined from 

(bk),  = i,,b!,, (3.36) 

and the interior tangential electric field mode follows from the decomposition 

e), = (e!,), d r+(eL) , .  (3.37) 

Thus for the particular magnetisations discussed in (2.27) and (2.50) the time-dependent 
radial and tangential fields are: 

( b " 0 ,  = ( b ,  cos a - bz sin a )  sin 6 

(e ' " ) ,  = ( - b ,  cos (Y + b2 sin a ) w r  sin' e e' 

( b ' f , ) ,  = y P ( y ) ( b ,  cos a - bz sin a )  sin 6 

(e'h), = y P ( y ) ( - b ,  cos a + 6, sin a )wr  sin' e e,. 

One finds for the non-zero amplitudes in the case of a pliable magnetisation: 

(3.38) 

(3.39) 

(3.40) 

(3.41) 

kma 
aTE( I ,  m ) = f (  b,  - mib,) I h j " ( k , a ) m  s : , u )  

y P ( y )  e'"'%, sin' 0 dB A d 4  (3.42) 

(3.43) 
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where m = 1, -1 and 

where 

63 @ i ( r ,  e)=-!n y 
w 

bl(r, 8 )  = b, cos e y 2  

= C O S  e. 

(3.44) 

(3.45) 

(3.46) 

(3.47) 

(3.48) 

Thus the exterior solution is represented as a multiple series in terms of the constants 
{bi} (to be determined) and the parameters w,  a and {mi}. 

In the case of the stiff magnetisation it follows from (3.38), (3.39) that the interior 
Fourier components are: 

(btu), = :( b, - ib2) sin 8 (3.49) 

(e:o),=-i(b,-ib,)wa sin'ee' (3.50) 

( b ? j ) , = ~ ( b , + i b , )  sin e 
(e:(,), = -;(b,+ib,)wa sin' @e'. I 

Hence the only non-zero amplitudes are 
r- 

CITE( 1, -1) = -(bl  + ib2) 

(3.51) 

(3.52) 

(3.53) 

(3.54) 

(3.55) 

(3.56) 

4. The discontinuity current 

To fix the constants {b,} in terms of the magnetisation we now compute the surface 
4-current and demand that the surface of the sphere in an inertial frame carry no 
surface 3-current when w = 0. The discontinuity 4-currentj,, a l-form on the hypersur- 
face r = a, is given by the boundary condition 

i , , [G'-G1l]/ ,=,  = -j, (4.1) 

G" = E O ~ ' l  = &o(-ell A e"-  $6"). 

where G' = E ~ F ' + I - I '  and 

(4.1) 
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The inertial surface charge density 2-form X u  and inertial surface 3-current density 
I-form X u  are given in terms of j ,  by - 

* j ,=xLJ r \d f+? luAdfA U (4.3 

where iu X u  = iu.XLI = 0 and  f =  r - a. Hence for the pliable magnetisation case we 
compute from (2.52), (3.1),  (3.22), (3.23) and (4.1)-(4.3): 

c,y'wr sin' B - q,ar@'lEl + y (  %',( y )  cos (Y - X 2 ( y )  sin a ) o r  sin 6 cos 6 

- c3 y ' sin B e' + E" e2  + y ( Z, ( y ) cos a - ( y ) sin (Y ) cos e e' 

+ y ( X , ( y )  sin a + X 2 ( y )  cos a l e 3  

(4.4) 

(4.5) 

h One may verify that the total inertial surface charge Ql=ss' Z<,, is equal and  
opposite to the total volume charge Qt,, = ss;, *GIh. Furthermore 0'; approaches zero 
as w tends to zero. In  such a limit ( y -  1)  we note that X,;, vanishes when we choose 

i = 1 ,  2 , 3 .  (4.6) 

The computation for the stiff magnetisation case proceeds in a similar manner but is 
simpler. We find 

b = '  111. 
I 3PO I 

c3 y'wr sin' B - + ( c I  cos (Y - c2 sin a ) w r  sin B cos B 

(4.7) 

- cj y 2  sin 8 e' + eo e' + ( c ,  cos a - c2 sin (Y ) cos B e2 

+ ( c ,  sin (Y + c, cos a )e' 

I + 1 E( , -  aTM(2, m)rhi"(k,u)#dY2, e-'','" 
m = i , - l  4% 

1 

- , = ) , - I  c Eo - w a  aTE(1, m)a,(rh\"(k,r))  dY, ,  e- 'htt1 '  (4.8) 

and again note the equality between Qg and Q:ol. Furthermore the condition ?l:,lw=o = 0 
leads to the same relation between the constants b, and m,, namely equation (4.6). 
Thus (2 .27) ,  (2.50) completely specifies the interior and exterior fields in terms of the 
magnetisation strength ( m ,  , m 2 ,  m3) and the parameters w and a. 
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5. The torque reaction 

The detailed structure of the multipole series for case b is determined by the functions 
P( y )  and X(y) that control the size of the various multipole amplitudes. Such functions 
are monotonic in the range [ I ,  m) with bounded variation. One may expand the 
multipole amplitudes as a power series in w a  to any desired degree of accuracy. There 
is certainly a range of w a  for which higher-order multipoles can play a non-trivial role 
in the details of the radiation pattern. Such modifications to the simple dipole model 
may be compared with alternative models (such as the off-centre point dipole [13]) 
that may produce qualitatively similar effects. As we noted in [ 101 the inertial surface 
charge and 3-current densities have a significant dependence on the presence of the 
high-order unipolar induction harmonics. 

To gain further insight into our solutions we have examined the torque experienced 
by a stiffly magnetised sphere due to the radiation of angular momentum. This may 
be contrasted with the average radiated power ( U ) .  Such a torque is generated by the 
angular momentum current that depends on the time-dependent components of F" .  
In general the inertial electric and magnetic fields defiened in (3.19), (3.20) have the 
Fourier expansions: 

s 

e = 1 e n ( r ,  e, 4 )  

b = 

n = - r  

X 

bn(r ,  0, 4 )  e-'k,,' 
n = - x  

(5.1) 

(5.2) 

where 

The time-averaged torque may be computed from the contribution of the radiative 
part of F" to the field angular momentum current. Thus it is convenient to introduce 
the 2-form 9: 

(5.5) 9= d t  A e-  t b  
X 

= (d t  A e,, - -$b , , )  
n = - x  

= 2 e-l'jz' 
n = -x 

(5.6) 

(5.7) 

where the Fourier components satisfy the reality condition 
- 
sn = 9-n. ( 5 . 8 )  

In terms of the Killing vector a, that generates rotations about the axis of rotation 
of the magnetised sphere we define the radiative angular momentum current 3-form as 

The time-averaged 3-form becomes 
T ~ , ,  = i [ i a C b F A  *9- id,,*9A $1. (5.9) 

(5.10) 
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To calculate the average torque on the rotating sphere we compute the (time-averaged) 
rate of angular momentum flux crossing a sphere of radius r > a. Since the total angular 
momentum 3-form is closed in I 1  we may evaluate our results for a value of r that 
permits us to use the asymptotic expression for the spherical Hankel functions. The 
average torque in the inertial frame is defined as 

Then using (4.3) we have 

x m)d; , ( l ' ,  m')h,,h;,, sin 6 d n Y , , ~ / , , , , . e 2 A  e3 . I 
Similarly from (5.4) 

(5.11) 

(5.12) 

(5 .13)  

x ay , ( / ,  m ) ~ y ~ ( l ' ,  mf)hln&n sin e a,V/,.,. Y,,e2 A e3  . (5.14) 

The interference terms involving the products aTMaTE in these expressions cancel in 
the average torque. One finds that they contribute 

I 
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where 

I y, = I:, ( x' - 1 ) (: P;" ( x )) P y  ( x ) d x  (5.17) 

Y,, = A,,P;"(cos 0 )  e""'. (5.18) 

From the properties of the associated Legendre functions we observe that for 
Il'-lI # 1, I , / . = O .  Furthermore it follows that the bracketed term in (5.15) vanishes 
for I I ' - I l  = 1. From (5.13), (5.14) we have 

(5.19) 

(5.20) 

This result is general. For our rigidly rotating solutions we recall that only amplitudes 
with m = n # 0 contribute. Hence 

One may evaluate the average power radiated in a similar way by using the Killing 
vector d ,  instead of a d  in (4.9).  One obtains in this manner the general time-averaged 
power: 

in terms of the multipole amplitudes. Hence we see that for our rigidly rotating sphere 

(5.23) 

so that 

w ( 7 ) = ( U ) .  (5.24) 

Using the explicit form of the amplitudes in (3.53)-(3.56) for the stiff magnetisation 
case we find that the time averaged torque is 

w 7 q ' 0  } .  (5.25) 
@ ' U 6  

7) = (7) p :( m f + m + 
{3(  1 + w ' a ' )  5(36 - 3 w 4 a 4 +  w6aa" )  

In  the ultrarelativistic limit as w a  + 1 

It is customary to estimate a pulsar spin-down rate by assuming that the radiated 
energy accounts for most of the loss of rotational kinetic energy. Strictly speaking one 
should not rely on (5.23) for a pulsar with a rapidly changing w since the derivation 
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has taken the angular speed constant throughout. However, if one assumes that it is 
reasonable to assert 

d 
d t  
- ( i 1 w 2 ( t ) )  = -( V ( w ) )  (5.26) 

(which is certainly consistent with d / d t (  10) = - ( ~ ( w ) ) )  for some constant moment of 
inertia 1, one may use the radiated power formula to estimate the change of pulsar 
period. For models based on magnetic dipole radiation one obtains, for some constant 

(j = - K W ~ ~  (5.27) 

with a breaking index nb = 3 .  This is also the equation determined by (5.25) for wa << 1. 
However for a general w the notion of a single breaking index is not applicable and 
one gets a different kind of differential equation for w ( t )  from (4.25). 

Although the particular magnetisations discussed in this paper may have little 
detailed relevance for magnetic stellar interiors, the general features inherent in higher- 
order multipole effects may be worthy of further consideration in astrophysical contexts. 
The high w dependence of the average torque is clearly a property not shared by 
magnetic dipole models. It would be of interest to see how the presence of relativistic 
multipole emissions affects the evolution of a pulsar in a more realistic model, based 
for instance on a magnetised sphere rotating in a magneto-plasma. In this context we 
note that the recently observed (optical) pulsar from the 1987A supernova is estimated 
to have an equatorial speed one half that of light. 

K :  
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